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Disulfide/thiol  polymer  networks  are
promising  as  sorbent  for  heavy  met-
als.
Rapid  sorption  and high  Langmuir
affinity constant  (aL)  for  stormwater
treatment.
Selective  sorption  for  copper,  cad-
mium, and  zinc  in  the  presence  of
calcium.
Reusability  likely  due  to  structure
stability  of  disulfide  linked  polymer
networks.
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a  b  s  t  r  a  c  t

Heavy  metal  contaminated  surface  water  is one  of the oldest  pollution  problems,  which  is  critical  to
ecosystems  and  human  health.  We  devised  disulfide  linked  polymer  networks  and  employed  as  a  sor-
bent  for removing  heavy  metal  ions  from  contaminated  water.  Although  the  polymer  network  material
has  a  moderate  surface  area, it  demonstrated  cadmium  removal  efficiency  equivalent  to  highly  porous
activated  carbon  while  it showed  16  times  faster  sorption  kinetics  compared  to activated  carbon,  owing
eywords:
ulfur functionality
olymer network
eavy metals ion removal
astewater treatment

elective removal

to  the  high  affinity  of  cadmium  towards  disulfide  and  thiol  functionality  in the  polymer  network.  The
metal  sorption  mechanism  on  polymer  network  was  studied  by  sorption  kinetics,  effect  of  pH,  and  metal
complexation.  We  observed  th
in  polymer  network,  even  in  th
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. Introduction

The heavy metal ions – cadmium, lead, copper, and zinc present
n contaminated wastewater has been an epidemic problem to
he environment and living organisms for millennia. Consider-
ble amounts of heavy metals originate from industrial operations,
ainly from mining, stormwater run-off and even agriculture

1–3]. Heavy metals accumulate in soils, plants, and animals due to
heir affinity for binding to solids and organisms [4]. The presence
f heavy metal ions in water causes adverse effects on ecosys-
ems and results in human health issues such as cancer and other
hronic diseases [5]. Furthermore, through bioaccumulation and
io-magnification, the general public is vulnerable to both direct
nd indirect heavy metal ion consumption through food and water
1].

Among the sources of heavy metal contamination in surface
ater, stormwater runoff is of increasing interest to environmental

ngineers and regulators, since other sources have become bet-
er managed whereas stormwater runoff treatment is still treated
o a limited extent, even though it is considered as wastewater
n the EU legislation [6]. The limited extent of stormwater treat-

ent is because runoff mostly occurs from a non-point source,
nlike other sources of heavy metals [7]. Recently, changes in cli-
ate have added significant challenges to the stormwater runoff

y changing precipitation patterns across the world to larger but
ore scattered rainfall events [8]. The concentration of heavy met-

ls in stormwater varies by region and land use–residential areas,
ighways, industrial, farming areas and sources, such as vehicles
petrol, tire wear, brake linings), building materials (roofing, walls)
9,10], etc. Based on the recent scenario, the concentration of heavy

etal ions in stormwater runoff often exceed water quality stan-
ard (WQS) values [11–13,2] in surface water. Various methods for
emoving heavy metals from wastewater, such as chemical pre-
ipitation [14], membrane filtration [15], ion exchange [16], and
dsorption [17], have not been efficiently applied to the stormwa-
er treatment due to the irregular occurrences of rain events and
he highly variable concentrations of heavy metals in addition to
ther pollutants in the runoff [18]. Adsorption methods are better
echniques compared to other methods for efficient treatment of
ontaminated stormwater due to low investment costs and because
arge volumes of stormwater can be treated within short time peri-
ds [19,20]. The sorption of heavy metal ions from water has been
tudied for decades. However, most of stormwater runoff studies
ave focused mainly on the heavy metal ions copper, zinc, lead,
hich mainly originates from building materials [21,22]. There
ave been only few studies of cadmium although it represent a sig-
ificant contaminant originating from roads, airfields and parking

ots [23].
The most widely applied sorption material is activated carbon

AC) since it has high porosity and low cost [24–26]. However, when
C is applied in water treatment it adsorbs a large variety of mostly
on-ionic pollutants and nontoxic solutes, including major cations
hich compete for the sorption capacity of the material and cause

t to become saturated quickly [17,27]. To overcome this hurdle,
arious minerals have been studied in passive geo-filters and these
ave been gradually employed for road runoff in Europe and North
merica [28] although these filters are only effective for selected
ollutants such as lead, zinc, and organic pollutants [6]. Krishnan
t al. [29] and Young et al. [30] previously evaluated the feasibility
f a sulfur-crosslinked sorbent for the removal of soft acid metals.
owever, their study was limited to specific metal sorption without

esting selectivity, and the sorption kinetics was too slow for use in

tormwater cleaning.

The demand for new sorbents, which not only have a high sur-
ace area but which are also selective, continues to drive research
nto efficient and functionalized sorbent materials [31]. In a sit-
aterials 332 (2017) 140–148 141

uation of growing environmental problems–global warming and
water pollution, the breadth of potential applications is widen-
ing for these functionalized sorbents. Covalent organic polymers
(COPs), which are porous networks of organic molecules inter-
connected by covalent bonds between monomers, were recently
introduced as new, universal, and functionalized sorbents. Due
to their robust properties [32], significant selectivity among gas
molecules [33], low cost, and regenerability [34], COPs have been
intensively studied in the field of carbon dioxide capture and stor-
age [35]. COPs have vast potential for many kinds of pollutants and
applications, and so their applicability in waste water treatment
targeting heavy metal ions appears promising.

Herein, we  report a disulfide-linked polymer networks (COP-63)
for the removal of heavy metal ions—particularly cadmium—from
contaminated water. COP-63 is synthesized using commercially
available monomers following a catalyst-free facile synthetic route
and synthesis can easily be scaled-up to grams scale. The polymer
networks owe  its removal ability to its porosity, and strong bind-
ing affinity of heavy metal ions such as cadmium, copper, and zinc,
rationalized through the hard-soft acid and base (HSAB) theory.
According to this theory, soft Lewis acids react preferentially with
soft Lewis bases and hard Lewis acids with hard Lewis bases. This
has been proven over the last decades and thus, it is commonly
used to explain the stability of compounds, reaction mechanisms
and pathways of metal-ligand interations [36]. Scheme 1 depicts
COP-63 sorption properties based on the HSAB theory where heavy
metal ions in the water are selectively attracted to the disulfide
groups and dangling thiol/thione groups in the organic polymer
in presence of competing cations. Moreover, free electron pairs in
nitrogen and sulfur of COP-63 are important for formation of coor-
dination complexes with heavy metal ions [37,38]. COP-63 has high
thermal and chemical stability [39,34], and it can thus be regen-
erated easily [32], thereby allowing for repetitive uses in water
treatment applications.

We have investigated the kinetics of sorption and maximum
equilibrium sorption capacity of COP-63, and compared with the
sorption properties of a high-quality AC (Norit 1240W, activated by
steam). Moreover, we have studied the sorption of selected heavy
metals at different pH values, to estimate the role of protonation of
the sulfur functionality and the effect of complexation. The com-
petitive sorption and selectivity of specific heavy metal ions have
also been investigated.

2. Experimental

2.1. Materials

Trithiocyanuric acid, sodium hydroxide, iodine, potassium
iodide, and granular activated carbon (AC: Norit 1240W) were pur-
chased from Sigma-Aldrich. Aqueous solutions of cadmium and
lead were prepared from 1000 mg/L ICP standard stock solutions
containing 2% w/w nitric acid purchased from Sigma-Aldrich. Zinc
solutions were prepared from zinc standard stock solution for AAS,
purchased from VWR, nickel solutions were prepared from chlo-
ride salt, while other metal ions solution were prepared from the
nitrate salts. All chemicals were used as received, unless otherwise
stated.

2.2. Synthesis of COP-63

A 250 mL  round-bottom flask was placed in an ice bath, and

0.02 mol  of trithiocyanuric acid dissolved in 100 mL  of water con-
taining 0.06 mol  of NaOH. In a separate vial, an oxidizing solution
was prepared by addition of 0.03 mol  iodine into a saturated KI
solution. Thereafter, the oxidant solution was  slowly added to the
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Scheme 1. Selective interactions among heavy metal ions a

rithiocyanuric acid solution at 0–5 ◦C with stirring and the reaction
ixture was stirred overnight at room temperature. Oxidation of

hiol groups in the trithiosyanuric acid caused formation of disul-
de bonds between the triazines and hence polymerization. The
ellow precipitate was filtered and washed several times with de-
onized water and dried at 80 ◦C overnight in a vacuum oven.

.3. Characterization of COP-63

Infrared spectra were measured with a Shimadzu IRTracer-
00 ATR spectrometer. Elemental analysis was performed on a
LASH 2000 series fromThermo Scientific. To evaluate the poros-
ty and BET surface area of COP-63, N2 adsorption isotherms at
7 K were obtained with a Micromeritics 3Flex surface charac-
erization analyzer after degassing the sample at 150 ◦C for 5 h
nder vacuum prior to measurement. Porosity was calculated
ased on the N2-DFT pore size distribution model. Field Emission
EM 300 kV, Tecnai G2 F30 S-Twin and FEI Quanta 200 ESEM FEG
ere used for imaging the particle morphology. The charge and
egree of COP-63 aggregation were measured according to zeta-
otential and hydrodynamic diameter (HDD) on a Zetasizer 2000,
alvern, UK. Thermo-gravimetric analysis (TGA) was performed on

 SHIMADZU-DTG 60A instrument by heating the sample to 800 ◦C
n a nitrogen atmosphere at a rate of 10 ◦C min−1.

.4. Single metal sorption isotherms

Sorption isotherms were determined in solutions prepared from
etal stock solutions and in presence of a 0.003 M NaHCO3 buffer.

H values were adjusted by 1 M of HCl and NaOH, to fall into the
ange 6–7. Seven different metal concentrations, ranging between

 and 75 mg/L, were used for the sorption isotherms, while AC
as tested at four different concentrations. In a conical polyethy-

ene (PE) tube, the cadmium solution was added to the sorbent
2 g/L). The tubes were shaken gently, and sampling started within

 few minutes from start. For kinetic experiments, seven sampling
imes were selected (initial, 2 mins, 10 mins, 1 h, 4 h, 24 h, and 48 h).
orbent and solution separation was performed using a 0.45 �m

egenerated cellulose syringe filter (Sartorious, Minisart generated
ellulose). Batches were shaken on an end-over-end rotator at
5 rpm and with a vibrating time of 5 s. All filtrates were acidified
ith 1% HNO3. Cadmium at higher concentrations were deter-
fur groups in covalent organic polymer suspended in water.

mined by atomic absorption spectroscopy (FAAS, LOD: 0.016 mg/L)
while lower cadmium concentrations were determined by induc-
tively coupled plasma optical emission spectrometry (ICP-OES,
LOD: 0.1 �g/L). Very low cadmium concentrations were deter-
mined by inductively coupled plasma mass spectrometry (ICP-MS,
LOD: 0.006 �g/L).

2.5. Multi-metal sorption test

A solution of five different heavy metal ions and one competitive
alkaline earth metal ion, calcium, were mixed in a 0.003 M NaHCO3
buffer solution. Initial pH values were adjusted to be in the range
6–7, by adding 1 M HCl or 1 M NaOH. The initial concentration of
each heavy metal was fixed at 10 mg/L, while the concentration
of the competitive metal ion was  set in the range 10–100 mg/L. In
a conical PE tube, the metal ion solution was  added to COP-63 at
a concentration of 0.2 g/L. Shaking and sampling were performed
as described above. All filtrates were acidified with 1% HNO3 and
stored at 4 ◦C until measurement by ICP-OES (LOD: 1.3 �g/L for
heavy metals, 13.2 �g/L for Ca).

2.6. Studies of the pH effect and heavy metal speciation

Solutions containing 10 mg/L of the heavy metal ions nickel,
copper, cadmium, lead, and zinc, and 0.003 M of NaHCO3, were
adjusted to pH values within the range 3–10, using 1 M of HCl and
NaOH and mixed with COP-63. Shaking and sampling were per-
formed as described above. All filtrates were acidified with 1% HNO3
and stored at 4 ◦C until measured by ICP-OES (LOD: 1.3 �g/L). Heavy
metal speciation in solution depending on pH was calculated using
the geochemical software code Visual MINTEQ ver. 3.0 [40]. In the
calculations the temperature was set to 25 ◦C and all concentrations
were the same as in the experiment.

2.7. Expression for sorption isotherm, sorption kinetics, and
affinity

For sorbents with a fixed number of sorption sites, the maximum

amount of metal ions sorbed to the polymer at equilibrium (qe) can
be calculated by use of the Langmuir isotherm equation:

qe = qmaLCe

1 + aLCe
(1)
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Fig. 1. FT-IR spectra of trithiocyanuric acid (black) and COP-63 (red). Distinc-
tive absorption bands at 2899–3136 cm−1 (N H, amine), 2500–2660 cm−1 (S H,
thiol), 700–1600 cm−1 (nonaromatic thione heterocycle), 800–1500 cm-1 (aromatic
trithiol heterocycle), 1109, 1119 cm−1 (C = S, thione), and 460–540 cm−1 (S S, disul-
fide). (For interpretation of the references to colour in this figure legend, the reader
is  referred to the web  version of this article.)

Fig. 2. Sorption isotherm for cadmium bonding to COP-63 and fitting by the Lang-
D. Ko et al. / Journal of Hazard

here qm is the maximum sorption capacity of the sorbent (mg/g),
e is the equilibrium concentration of the adsorbate in solution
mg/L), and aL is the Langmuir affinity constant.

To describe the sorption kinetics, a pseudo first-order kinetic
odel was suggested by Lagergren (1989), the linear form of which

s formulated as:

n (qe − qt) = In qe − k1t (2)

here qe and qt are the amounts of metal ions sorbed (mg/g) at
ime t and k1 is the rate constant of the sorption (1/min).

Another model for chemisorption was given by Ho and McKay
1999) applying pseudo second-order kinetics [41] which can be
xpressed as:

t
qt

= 1

k2qe
2

+
(

1
qe

)
t (3)

here k2 is the rate constant (g/mg·min), while the other terms
ave the same meaning as in Eq. (2).

The affinity of the sorbent for binding of heavy metal ions can
e expressed by the distribution of the metal between solid phase
Cs) and water (Cw) given by the distribution coefficient Kd (L/kg):

 � d
Cs

Cw
= Ci − Ce

Ce
× V

m
(4)

here Ci and Ce are the initial and final concentrations (mg/L),
espectively. V is volume of the solution (mL), and m is the mass of
OP-63 used in the batch (g).

. Results and discussion

.1. Synthesis and characterization of COP-63

Polymerization of COP-63 was achieved through simple, one-
ot synthesis involving a single monomer at ambient conditions. In
he chemical structure of COP-63, each fragment has three disulfide
roups that bridge to three other triazines [C3N3S3]n, and dangling
hiol/thione groups at the end of polymer chains, see the structures
f the monomer and the polymer in Fig. 1. The formation of disulfide
inkages was confirmed by Fourier transform infrared spectroscopy
FT-IR) and elemental analysis (EA). The FT-IR spectra (Fig. 1) show
eaks in the range 2899–3136 cm−1 for N H stretching in tri-
zine groups and these peaks became less when COP-63 formed.
hree strong peaks at 1524, 1109, 742 cm−1 that correspond to the
onaromatic thione heterocycle stretching are shifted to aromatic
rithiol stretching 1466, 1230, 825 cm−1 in the polymer, which
eflects that a disulfide polymer has formed [42,43]. The peaks at
109 and 1119 cm−1 represent C S stretching in the monomer and
OP-63, respectively. Peaks ranging between 460 and 540 cm−1

howed the formation of disulfide linkages in the COP-63 [44]. The
bsence of sharp S-H peaks[45] at 2500–2660 cm−1 and remaining

 S peaks in 1119 cm−1 confirms the substitution of thiol sites to
isulfide and the existence of thiol/thione groups in COP-63[43].

The elemental analysis showed that the COP-63 contain 52.5% S,
1.3% N, 19.8% C, 0.4% H, and 4.0% O. These fractions are compara-
le with the theoretical elemental percentage of COP-63: 0.46 mol
2O (Theoretical S: 52.7%, N: 23.0%, C: 19.7%, H: 0.5%, and 4.0%
). BET measurements showed that COP-63 had a specific surface
rea of 150 m2/g, with the majority of pores larger than 2 nm in
iameter (Supplement Fig. S1); morphology characterization also
howed the presence of pores in the polymer (Supplement, Fig.
6). It is expected that the pores larger than 2 nm pore size will

rovide faster accessibility between the sulfur functional groups
nd heavy metal ions during sorption. Thermogravimetric (TGA)
nalysis revealed that COP-63 is thermally stable up to 200 ◦C (Sup-
lement, Fig. S4).
muir isotherm (Eq. (1)). Equilibration time of 48 h, pH 6–7, ambient conditions. Inset:
Linearized form of Langmuir fitting, r2 0.998. Error bars represent 95% confidence
interval.

3.2. Heavy metal sorption equilibrium

To determine cadmium affinity and the sorption capacity of
COP-63, sorption isotherms were produced. As shown in Fig. 2, the
sorption isotherm data could be fitted successfully to a Langmuir

sorption model.

The maximum sorption capacity of the sorbent (qm) estimated
from the Langmuir isotherm (Eq. (1)) reached 9.9 mg/g for COP-63,
compared to 11.9 mg/g for AC (Supplement, Fig. S2). It is impor-
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Table 1
Mean value of zeta potential (mV) and hydrodynamic diameter (HDD) (�m) of COP-
63  at different pH (Supplement, Fig. S5).

pH Zeta Potential (mV)
Mean values of two
measurements

HDD (�m) and
standard deviation

2.9 −3.4 1.5 ± 0.5
5.3  −26.8 0.4 ± 0.1
6.7  −33.45 0.3 ± 0.1
44 D. Ko et al. / Journal of Hazard

ant to note that the BET surface area of COP-63 was  150 m2/g,
hereas the surface area of AC was 1100 m2/g. Based on the specific

urface area, the cadmium maximum sorption capacity of COP-63
as 0.07 mg/m2 compared to 0.01 mg/m2 for AC. Thus, COP-63 has

even times higher sorption capacity per contact surface compared
o AC. Moreover, the Langmuir affinity constant (aL) of COP-63 was
.43 L/mg compared with 0.39 L/mg for AC, illustrating that COP-
3 has nearly 10 times higher sorption affinity compared to AC
Supplement, Table S1).

.3. Sorption kinetics

The kinetics of sorption is one of the important parameters,
roviding insights into the sorption mechanism [46]. Fast sorption
inetics for heavy metal adsorption is important, as it determines
he size of the filter that is required relative to the water flow
o be treated. This is particularly important in the treatment of
tormwater runoff, which occurs sporadically but in large volumes
nd therefore requires fast sorption kinetics [47]. In the kinetic
ests, 98% of total cadmium was removed by both sorbents, i.e. COP-
3 and AC, within 3000 min  (Fig. 3a). However, in terms of rate of
orption, COP-63 and AC exhibited significant differences (Fig. 3a,
nset).

To find the best-fitting kinetic model for the sorption data, both
he pseudo first-order kinetic (Eq. (2)) and the pseudo-second order
inetic models (Eq. (3)) were fitted (Fig. 3b,c). By comparing model
ts, the pseudo second-order kinetic model returned the best fit

or COP-63 (r2 = 0.999). In contrast, the data for AC were better
escribed by the pseudo first-order model (r2 = 0.985) (Supple-
ent, Fig. S3). This may  conform with a strong chemical sorption

o COP-63 and physical sorption to AC [48,49].
It is highly relevant for the application of sorbents to note that

he half-life (t1/2) for the removal of cadmium by AC is 63 min,
hereas the half-life (t1/2) for sorption by COP-63 is 4 min. Thus,
OP-63 displays much faster cadmium sorption than AC, and hence
lters with much lower residence times can be made by using COP-
3 compared with AC.

COP-63 demonstrated excellent affinity to sorb cadmium from
ater, as Kd reached 4.29 × 105 L/kg at the equilibrium concentra-

ion of 1 �g/L (Supplement, Table S1). Based on the study reported
y Shin et al. (2007), a Kd value of 104 L/kg is considered quite good,
nd a Kd value of 105 L/kg is considered excellent [50].

.4. Effect of pH on metal complexation and the protonation of
ctive sorption sites

Unlike physical sorption, COP-63 contains specific active disul-
de and thiol-binding sites for heavy metal ions. In order to utilize
hese active sites, both a negative charge on the polymer (here
etermined as the zeta potential) and diffusion of metal ions to
ctive sites are important. Strong binding of cations can be expected
hen sorptive surfaces are negatively charged [51,52] in addition

o the formation of strong covalent bonds between metal ions and
he bonding sites [53]. Diffusion can be determined by aggregat-
ng COP-63 particles, expressed by the hydrodynamic diameters of
he particles. Aggregation tends to increase the distance metal ions
ill diffuse from a solution to the active binding site, thus slowing

he sorption kinetics. To investigate the efficiency of COP-63 active
ites, the zeta potential and hydrodynamic diameter (HDD) at five
ifferent pH values were examined (Table 1).

As shown in Table 1, the lowest zeta potential was  observed

t intermediate pH, i.e. pH 6–8, ranging from −32.4 to −33.7 mV.
oreover, the smallest HDD size was seen at pH 6–8, which may

rovide the faster contact of heavy metal ions to active sites. There-
ore, COP-63 can be expected to have the highest chemical removal
8.0  −32.1 0.3 ± 0.1
10.3 −31.1 0.4 ± 0.1

capacity of heavy metal ions at intermediate pH — which aligns well
with typical pH values of stormwater runoff. It is worth noting that
at high pH (pH 10.3) values, COP-63 particles show slightly weaker
negative zeta potential and a higher HDD diameter, albeit they are
almost similar to the values in the intermediate pH range. Hence,
even at a high pH, COP-63 is expected to have similar sorption prop-
erties as at intermediary pH. On the other hand, at pH 5.3 and 2.9,
COP-63 shows a significantly higher hydrodynamic diameter and
smaller zeta potential, which leads to aggregation of particles that
may  slow down the rate of sorption [53].

To evaluate the binding of the heavy metal ions to sulfur func-
tional active sites versus pH, tests were carried out to determine
the sorption of five heavy metal ions at eight different pH values.
Furthermore, for each heavy metal solution, speciation was calcu-
lated by Visual MINTEQ to evaluate the major species in solution
(Fig. 4).

Sorption data for intermediate pH values (pH 6–8) show the
highest removal efficiency—as expected—based on zeta potential
and HDD values. However, exceeding the intermediate pH range,
sorption declined though zeta potential and HDD of the polymer
was similar with values at intermediate pH values. This can be
explained by metal ion speciation in solution. When pH exceed
the intermediate pH range, metal ions form negatively charged
metal complexes, which apparently do not bind to a negatively
charged active polymer site, even though COP-63′s active sites are
still available. Heavy metal removal efficiency decreases at low pH,
where the zeta potential is smaller and HDD is higher. Moreover,
at a low pH, there is significant competition between H+ and metal
cations for binding sites, which decreases sorption efficiency [54].
In conclusion, the highest chemical sorption capacity appears at an
intermediate pH of 6–8, in accordance with sufficient negative sur-
face charge, high contact area for COP-63′s active sites, and optimal
speciation of metal ions in solution.

3.5. Selective sorption

In conventional water treatment processes, AC is a widely used
heavy metal sorbent. However, the sorption of other major cations,
such as cadmium and magnesium, competes with the sorption
of heavy metal cations and hence reduces the efficiency of AC
for heavy metal binding in many types of wastewater, such as
stormwater. Hence, in order to be efficient in real treatment appli-
cations, a sorbent must not only have sufficient sorption capacity
and fast sorption kinetics, but it should also show high selectivity of
the target metal ions. Thus, selective metal sorption studies in the
presence of competitive cation were conducted to demonstrate the
selectivity of COP-63. Four different heavy metal ions commonly
occurring in polluted water streams, namely copper, nickel, lead,
and zinc, were selected besides cadmium. As a competitor, one of
the most abundant divalent cations in water, calcium, was added

at different concentrations.

As shown in Fig. 5, the presence of calcium has different effects
on the sorption of heavy metal ions to COP-63 and AC. The most
pronounced differences is seen for copper removal, where COP-
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Fig. 3. Kinetics of cadmium sorption to COP-63 and AC. (a) Removal of cadmium in solution plotted versus time and lines dues to fitting by the first-order kinetic model
(Eq.  (2)). Initial concentration was 10 mg/L. Error bar refers to standard deviation (n = 3) Inset: Enlarged graph from start to 240 min. (b) Pseudo first-order kinetics model
(Eq.  (2)) fitted by linear regression for cadmium sorption on COP-63 and AC. (c) Fitting of the pseudo sec-ond-order kinetics model (Eq. (3)) to sorption data (red symbols:
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OP-63, black symbols: AC). (For interpretation of the references to colour in this fi

3 has much stronger bonding than AC, while calcium has a very
inor effect on heavy metal bonding to COP-63 but a marked effect

n the bonding of copper to AC. In the case of zinc, lead, cadmium,
nd nickel, any increase in the concentration of calcium positively
ffects the sorption of the heavy metals. It is important to note that
or zinc and cadmium, COP-63 again shows higher selectivity than
C in the presence of calcium. For nickel and lead, on the other hand,
OP-63 has less selectivity compared to AC under the test condi-
ions. This is explained by the hard-soft acid base (HSAB) theory,
ince a soft base (COP-63) was dispersed in the solution containing
oft acids (heavy metal ions). Among heavy metal ions, copper and
admium are well-known soft acids and have higher polarizability,

hich in turn results in the higher tendency of electron distortion

o contribute to affinity. However, nickel, lead, and zinc are defined
s “borderline acids” that have less affinity to soft bases compared
o strong soft acids [55]. In conclusion, the selectivity studies show
egend, the reader is referred to the web version of this article.)

that COP-63 has high binding affinities to copper, cadmium, and
zinc in the presence of up to 10 times higher concentrations of
calcium in water.

3.6. Treatment perspective

Mines et al. [56] demonstrated that COP could be grafted easily
and inexpensively onto granular AC to create a functional polymer
shell. Briefly, surface-oxidized AC was treated with thionyl chloride,
followed by the addition of melamine, to create a backbone con-
taining a COP monomer covalently bound on the AC surface. The
precursors were polymerized to create an amino-functionalized

COP structure on the AC surface. The resulting COP  was found to
be covalently bound to AC, while it maintained the sorption func-
tionality of the pure COP polymer [56]. Similarly, COP-63 could be
grafted onto AC by replacing melamine with trithiocyanuric acid,
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ollowed by the same polymerization reaction as described in this
ork. This would form granular AC-sized beads with the sorp-

ion capacity and kinetics of COP-63 at an ideal particle size and
echanical strength for building filters that would thus express

aster sorption kinetics and higher selectivity for the sorption of
oft acid metals compared to high-quality activated carbon. It is
ikely that such a material would also be highly stable to allow for
egeneration, due to the covalent bonding between AC and COP,

hich is known to tolerate heat (Supplement, Fig. S4) and chemical

egeneration (Supplement, Fig. S7).
ared with solution speciation computed by Visual Minteq. The plot with a dashed
he speciation.

4. Conclusions

In this study, disulfide-linked covalent organic polymer, COP-63,
was used as a sorbent for selective heavy metal removal from con-
taminated waters. COP-63 has almost similar maximum sorption
capacity for heavy metals as high-quality AC on a mass basis while
COP-63 has a seven times higher sorption capacity than AC on a
specific surface area basis. The COP-63 has faster sorption kinetics,

and thereby half of heavy metal ions are removed from a solution
within 4 min  (t1/2), which is 16 times faster than AC. The chemisorp-
tion mechanism of the polymer networks was confirmed by kinetic
and pH effect studies that confirmed heavy metal binding on disul-
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Fig. 5. Selective sorption of five different heavy metal ions in the presence of calcium as a competing cation to COP-63 and AC. Three different concentrations of calcium
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de and thiol sites. The zeta potential of COP-63 and the metal
peciation significantly affected sorption of metal ions at different
H. It was observed that the targeted heavy metal ions such as cop-
er, cadmium, and zinc, show high binding affinity to COP-63 in
he presence of 10 times higher concentrations of alkaline earth

etal ions in water. COP-63 has sufficient sorption capacity with
ast kinetics and has strong binding affinity with heavy metal ions.
ence, COP-63 can be a potential sorbent for stormwater treatment
here peak flows cause short residence times.
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